对于mnist数据集,我实现了一些简单的网络,同样在20epochs训练获得的loss和acc
序号 | 网络结构 | loss和acc | ||
2 | model = Sequential() model.add(Dense(units = 121,input_dim = 28 * 28)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 81)) model.add(Activation(‘relu‘)) model.add(Dense(units = 10)) model.add(Activation( ‘softmax‘)) | loss: 0.11605372323654592 acc: 0.9649999737739563 | ||
3 | model = Sequential() model.add(Dense(units = 121,input_dim = 28 * 28)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 108)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 10)) model.add(Activation( ‘softmax‘)) | loss: 0.11722589706927537 acc: 0.964600026607513 | ||
4 | model = Sequential() model.add(Dense(units = 121,input_dim = 28 * 28)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 81)) model.add(Activation(‘relu‘)) model.add(Dense(units = 108)) model.add(Activation(‘relu‘)) model.add(Dense(units = 10)) model.add(Activation( ‘softmax‘)) | loss: 0.10050583745818585 acc: 0.9702000021934509 | ||
5 | model = Sequential() model.add(Dense(units = 121,input_dim = 28 * 28)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 81)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 108)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 138)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 169)) model.add(Activation( ‘relu‘)) model.add(Dense(units = 10)) model.add(Activation( ‘softmax‘)) | lo ss: 0.11574177471690346 acc: 0.9668999910354614 | ||
6 | model = Sequential() model.add(Dense(units = 121,input_dim = 28 * 28)) model.add(Activation( ‘relu‘)) model.add(Dropout( 0.5)) model.add(Dense(units = 81)) model.add(Activation( ‘relu‘)) model.add(Dropout( 0.25)) model.add(Dense(units = 10)) model.add(Activation( ‘softmax‘)) model.compile( loss = ‘categorical_crossentropy‘, optimizer = keras.optimizers.SGD(lr=0.01,momentum=0.9,nesterov=True), metrics = [ ‘accuracy‘ ] ) | loss: 0.08351417180134449 acc: 0.9753000140190125 | ||
以上都是多层感知机,以下都是卷积神经网络 | ||||
7 | def read_images(filename,items): file_image = open(filename, ‘rb‘) file_image.seek( 16) data = file_image.read(items * 28 * 28) X = np.zeros(items * 28 * 28) for i in range(items * 28 * 28): X[i] = data[i] / 255 file_image.close() return X.reshape(-1,28 ,28,1) X_train = read_images( ‘D:/dl4cv/datesets/mnist/train-images.idx3-ubyte‘, 60000) X_test = read_images( ‘D:/dl4cv/datesets/mnist/t10k-images.idx3-ubyte‘, 10000) y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) model = Sequential() model.add(Conv2D(32,kernel_size = (3,3),activation=‘relu‘,input_shape=(28,28,1))) model.add(MaxPooling2D(pool_size =(2,2))) model.add(Conv2D(64,(3,3),activation=‘relu‘)) model.add(MaxPooling2D(pool_size =(2,2))) model.add(Flatten()) model.add(Dense(128,activation=‘relu‘)) model.add(Dropout(0.5)) model.add(Dense(10,activation=‘softmax‘)) model.compile( loss = keras.losses.categorical_crossentropy, optimizer = keras.optimizers.Adadelta(), metrics = [ ‘accuracy‘] ) #plot_model(model, to_file=‘model1.png‘, show_shapes=True) model.fit( X_train, y_train, batch_size= 128, epochs= 10, verbose= 1, validation_data =(X_test,y_test) ) | loss: 0.020046546813212628 acc: 0.993399977684021 注意事项:一般是dense后才链接dropout 中间用relu,最后用softmax flatten一般在最后的地方。 | ||
8 | model = Sequential() model.add(Conv2D( 6,kernel_size = ( 5, 5),strides = 1,activation = ‘relu‘, input_shape = ( 28, 28, 1))) #filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量) model.add(MaxPooling2D(pool_size = ( 2, 2),strides = 2)) model.add(Conv2D( 16,kernel_size = ( 5, 5),strides = 1,activation = ‘relu‘)) #卷积核越小,filters越长 model.add(MaxPooling2D(pool_size = ( 2, 2),strides = 2)) model.add(Flatten()) # model.add(Dense( 84 ,activation= ‘relu‘ )) 这里添加之后,可以提高0.1左右 model.add(Dense( 10,activation= ‘softmax‘)) #输出10类 | 原始的letnet loss: 0.05069914509201189 acc: 0.9839000105857849 | ||
LeNet5网络虽然很小,但是包含了深度学习的基本模块:卷积层、池化层、全连接层。LeNet5共有七层,不包含输入,每层都包含可训练参数,每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征,然后每Feature Map有多个神经元。 输入: 32?32
32?32的手写字体图片,这些手写字体包含0-9数字,也就是相当于10个类别的图片。 输出: 分类结果,0-9之间的一个数(softmax) 2.2 各层结构及参数
1. INPUT(输入层) 32?32
2. C1(卷积层) 选取6个5?5
3. S2(池化层)
4. C3(卷积层) 选取61个5?5 5. S4(池化层) 6. C5(卷积层) 总共120个feature map,每个feature map与S4层所有的feature map相连接,卷积核大小为5?5 7. F6(全连接层) F6相当于MLP(Multi-Layer Perceptron,多层感知机)中的隐含层,有84个节点,所以有84?(120+1)=10164 8. Output(输出层) 全连接层,共有10个节点,采用的是径向基函数(RBF)的网络连接方式。