IDEA,SparkSql读取HIve中的数据

传统Hive计算引擎为MapReduce,在Spark1.3版本之后,SparkSql正式发布,并且SparkSql与apache hive基本完全兼容,基于Spark强大的计算能力,使用Spark处理hive中的数据处理速度远远比传统的Hive快。

在idea中使用SparkSql读取HIve表中的数据步骤如下

1、首先,准备测试环境,将hadoop集群conf目录下的core-site.xml、hdfs-site.xml和Hive中conf目录下hive-site.xml拷贝在resources目录下




2、pom依赖

 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.0.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>2.0.1</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.25</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.0.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.1</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.7.1</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.4.11</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.41</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.4.11</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>2.1.0</version> </dependency> <dependency> <groupId>com.101tec</groupId> <artifactId>zkclient</artifactId> <version>0.3</version> </dependency> <dependency> <groupId>com.github.sgroschupf</groupId> <artifactId>zkclient</artifactId> <version>0.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> <version>2.3.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-scala_2.11</artifactId> <version>1.7.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.7.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table_2.11</artifactId> <version>1.7.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.0.1</version> </dependency>

3、代码开发

import org.apache.spark.sql.{DataFrame, SparkSession}object SparkSql_Hive { def main(args: Array[String]): Unit = { //创建SparkSession对象 val spark = SparkSession.builder() .appName(this.getClass.getSimpleName) .master("local[*]") .config("dfs.client.use.datanode.hostname", "true") .enableHiveSupport() .getOrCreate() //指定库名 val sql1 = "use mydb" spark.sql(sql1) //查看该库下的表结构 val sql2 = "show tables" spark.sql(sql2).show() //读取hivemydb库下per表 val sql3 = "select * from mydb.per" spark.sql(sql3).show() }}

4、查看打印结果
显示mydb库下的所有表

可以看到SparkSql已经读取了Hive中的数据
5、测试中遇到的问题
(1)、找不到HIve相关的类

Exception in thread "main" java.lang.IllegalArgumentException: Unable to instantiate SparkSession with Hive support because Hive classes are not found. at org.apache.spark.sql.SparkSession$Builder.enableHiveSupport(SparkSession.scala:778) at com.yangshou.SparkSql_Hive$.main(SparkSql_Hive.scala:12) at com.yangshou.SparkSql_Hive.main(SparkSql_Hive.scala)

通过查阅相关资料,最后认为是Spark版本不对,把pom文件中Spark2.1.0的版本改为2.0.1,最终解决问题

相关文章