Netty源码分析第2章(NioEventLoop)—->第7节: 处理IO事件

 

Netty源码分析第二章: NioEventLoop

 

第七节:处理IO事件

 

上一小节我们了解了执行select()操作的相关逻辑, 这一小节我们继续学习select()之后, 轮询到io事件的相关逻辑:

回到NioEventLoop的run()方法:

protected void run() { for (;;) { try { switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) { case SelectStrategy.CONTINUE: continue; case SelectStrategy.SELECT: //轮询io事件(1) select(wakenUp.getAndSet(false)); if (wakenUp.get()) { selector.wakeup(); } default: } cancelledKeys = 0; needsToSelectAgain = false; //默认是50 final int ioRatio = this.ioRatio; if (ioRatio == 100) { try { processSelectedKeys(); } finally { runAllTasks(); } } else { //记录下开始时间 final long ioStartTime = System.nanoTime(); try { //处理轮询到的key(2) processSelectedKeys(); } finally { //计算耗时 final long ioTime = System.nanoTime() - ioStartTime; //执行task(3) runAllTasks(ioTime * (100 - ioRatio) / ioRatio); } } } catch (Throwable t) { handleLoopException(t); } //代码省略 } }

我们首先看if (ioRatio == 100)这个判断, ioRatio主要是用来控制processSelectedKeys()方法执行时间和任务队列执行时间的比例, 其中ioRatio默认是50, 所以会走到下一步else

首先通过final long ioStartTime = System.nanoTime()记录下开始时间, 再通过processSelectedKeys()方法处理轮询到的key, 我们跟到processSelectedKeys()方法中:

private void processSelectedKeys() { if (selectedKeys != null) { //flip()方法会直接返回key的数组 processSelectedKeysOptimized(selectedKeys.flip()); } else { processSelectedKeysPlain(selector.selectedKeys()); } }

我们知道selector通过netty优化之后, 会初始化 selectedKeys这个属性, 所以这个属性不为空就会走到processSelectedKeysOptimized(selectedKeys.flip())方法, 这个方法就是对应优化过的selector进行操作的, 如果是优化的selector, 则会进入processSelectedKeysPlain(selector.selectedKeys())方法

selectedKeys.flip()为selectedKey中绑定的数组, 我们之前小节讲过selectedKeys其实是通过数组存储的, 所以经过select()操作如果监听到事件selectedKeys的数组就会有值

跟进到processSelectedKeysOptimized(selectedKeys.flip())方法中:

private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) { //通过for循环遍历数组 for (int i = 0;; i ++) { //拿到当前的selectionKey final SelectionKey k = selectedKeys[i]; if (k == null) { break; } //将当前引用设置为null selectedKeys[i] = null; //获取channel(NioSeverSocketChannel) final Object a = k.attachment(); //如果是AbstractNioChannel, 则调用processSelectedKey()方法处理io事件 if (a instanceof AbstractNioChannel) { processSelectedKey(k, (AbstractNioChannel) a); } else { @SuppressWarnings("unchecked") NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a; processSelectedKey(k, task); } //代码省略 } }

首先通过for循环遍历数组中的每一个key, 获得key之后首先将数组中对应的下标清空, 因为selector不会自动清空, 这与我们使用原生selector时候, 通过遍历selector.selectedKeys()的set的时候, 拿到key之后要执行remove()是一个意思

之后获取注册在key上的channel, 判断channel是不是AbstractNioChannel, 通常情况都是AbstractNioChannel, 所以这里会执行rocessSelectedKey(k, (AbstractNioChannel) a)

跟到rocessSelectedKey(k, (AbstractNioChannel) a)方法中:

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { //获取到channel中的unsafe final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); //如果这个key不是合法的, 说明这个channel可能有问题 if (!k.isValid()) { //代码省略 } try { //如果是合法的, 拿到key的io事件 int readyOps = k.readyOps(); //链接事件 if ((readyOps & SelectionKey.OP_CONNECT) != 0) { int ops = k.interestOps(); ops &= ~SelectionKey.OP_CONNECT; k.interestOps(ops); unsafe.finishConnect(); } //写事件 if ((readyOps & SelectionKey.OP_WRITE) != 0) { ch.unsafe().forceFlush(); } //读事件和接受链接事件 //如果当前NioEventLoop是work线程的话, 这里就是op_read事件 //如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件 if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) { unsafe.read(); if (!ch.isOpen()) { return; } } } catch (CancelledKeyException ignored) { unsafe.close(unsafe.voidPromise()); } }

我们首先获取和channel绑定的unsafe, 之后拿到channel注册的事件

我们关注if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0)这个判断, 这个判断相信注释上写的很明白, 如果当前NioEventLoop是work线程的话, 这里就是op_read事件, 如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件

然后会通过channel绑定的unsafe对象执行read()方法用于处理链接或者读写事件

以上就是NioEventLoop对io事件的处理过程, 有关read()方法执行逻辑, 会在以后的章节中详细剖析

 

 

相关文章