数据应用场景之标签管理体系

一、标签简介

标签概念

标签,最初用来对实物进行分类和标记,例如标明物品的品名、重量、体积、用途等简要信息。后来逐渐流行到数据行业,用来标记数据,对数据快速分类获取和分析。

标签特点

精确描述定位和搜索,具有生命周期的特性,可以计算,配置和规则化处理。可以用标签来描述各种结构和非结构化[文档、图片、视频等]的数据,从而使这些内容被高效的管理。

  • 描述特征:标签[手机颜色],特征[红色,白色];
  • 描述规则:标签[活跃用户],规则[每日登陆,产生交易];

标签价值

  • 精细运营的基础,有效提高流量精准和效率。
  • 帮助产品快速定位需求数据,进行精准分析;
  • 能帮助客户更快切入到市场周期中;
  • 深入的预测分析数据并作出及时反应;
  • 基于标签的开发智能推荐系统;
  • 基于某类下的数据分析,洞察行业特征;

标签的核心价值,或者说最常用的场景:实时智能推荐,精准化数字营销。

二、标签定义

数据应用场景之标签管理体系

属性标签

属性标签是描述基本特征,不需要行为产生,也不是基于规则引擎分析,例如基于用户实名认证信息,获取:性别,生日,出生日期等特征。变动频率极小,且精准性较高。

行为标签

通过不同业务渠道埋点,捕捉用户的行为数据,基于这些数据分析,形成结果描述的标签,例如:分析用户「网购平台」,得到的结果拼多多,淘宝,京东,天猫等。这些都是需要通过行为数据来判断的标签。

规则标签

规则下分析出来的标签,更多是基于产品或者运营角度来看,例如电商平台需要对会员等级超过5级,且近7天活跃的会员发一次福利,这里就涉及两个标签应用:1.「会员等级」基于什么规则判断;2.「近7天活跃」如何判断,是基于登录,还是产生交易行为,这些都要可以动态配置,然后基于规则引擎把结果生成。基于动态的规则配置,经过计算和分析,生成描述的标签,也就是规则标签。

拟合标签

拟合类标签极具复杂性,通过对多种标签智能组合分析,给出预测描述,或者直接给出进阶定义,例如所谓的读心术,即通过多个特征,眼神信息,判断人的心理活动。在机器学习中有一句话:通过长期对用户行为的判断和学习,机器可能比用户还了解用户。

三、标签管理体系

层级分类

标签管理的基本手段,通常以行业来分:金融,教育,娱乐等;通过多级分类细化管理。

基础标签

即数据的关键标签,特点精确扁平,不可再细分,用来精确的描述数据,类似元数据。当使用多个标签组合描述数据特征,就会形成结构化的表管理。

标签值类型

值类型:数字,字典,布尔,日期,文本框,自定义等,是对标签具体值的管理。例如标签「性别」,标签值「男.女.未知」,这种典型通过罗列字典来描述的场景。

四、标签生产流程

1、基础流程

数据应用场景之标签管理体系

数据采集

数据采集的渠道相对较多,比如同一APP内的各种业务线:购物、支付、理财、外卖、信息浏览等等。通过数据通道传输到统一的数据聚合平台。有了这些海量日志数据的支撑,才具有数据分析的基础条件。不管是数据智能,深度学习,算法等都是建立在海量数据的基础条件上,这样才能获取具有价值的分析结果。

数据加工

结合如上业务,通过对海量数据的加工,分析和提取,获取相对精准的用户标签,这里还有关键的一步,就是对已有的用户标签进行不断的验证和修复,尤其是规则类和拟合类的相关标签。

标签库

通过标签库,管理复杂的标签结果,除了复杂的标签,和基于时间线的标签变,标签数据到这里,已经具有相当大的价值,可以围绕标签库开放一些收费服务,例如常见的,用户在某电商APP浏览某些商品,可以在某信息流平台看到商品推荐。大数据时代就是这么令人感觉智能和窒息。

标签业务

数据走了一大圈转换成标签,自然还是要回归到业务层面,通过对标签数据的用户的分析,可以进行精准营销,和智能推荐等相关操作,电商应用中可以提高成交量,信息流中可以更好的吸引用户。

应用层

把上述业务开发成服务,集成到具有的应用层面,不断提升应用服务的质量,不断的吸引用户,提供服务。当然用户的数据不断在应用层面产生,在转到数据采集服务中,最终形成完整的闭环流程。

2、数据聚合池

  • 基于IDmapping技术,置换唯一标识[uid];
  • 基于uid关联标签,放入计算池;
  • 相同的uid携带的标签会以贪吃蛇的方式运行;
  • 不断丰富该uid下携带的标签内容;

以此方式丰富标签的场景,产生更大的数据价值;

五、源代码地址

GitHub·地址
https://github.com/cicadasmile
GitEE·地址
https://gitee.com/cicadasmile

数据洞察系列文章

序号 标题
01 数据分析:基于智能标签,精准管理数据
02 数据分析:数据可视化图表,BI工具构建逻辑
03 数据分析:复杂业务场景下,量化评估流程

推荐阅读:编程体系整理

序号 项目名称 GitHub地址 GitEE地址 推荐指数
01 Java描述设计模式,算法,数据结构 GitHub·点这里 GitEE·点这里
02 Java基础、并发、面向对象、Web开发 GitHub·点这里 GitEE·点这里
03 SpringCloud微服务基础组件案例详解 GitHub·点这里 GitEE·点这里
04 SpringCloud微服务架构实战综合案例 GitHub·点这里 GitEE·点这里
05 SpringBoot框架基础应用入门到进阶 GitHub·点这里 GitEE·点这里
06 SpringBoot框架整合开发常用中间件 GitHub·点这里 GitEE·点这里
07 数据管理、分布式、架构设计基础案例 GitHub·点这里 GitEE·点这里
08 大数据系列、存储、组件、计算等框架 GitHub·点这里 GitEE·点这里
发表评论

评论已关闭。

相关文章